Relative Permeability and Capillary Pressure Controls on CO₂ Migration and Brine Displacement Sally M. Benson¹ Ljubinko Miljkovic², Liviu Tomutsa² and Christine Doughty² ¹Energy Resources Engineering Dept., Stanford University ²Earth Sciences Division, Lawrence Berkeley National Laboratory ### Acknowledgements - Funded by DOE Fossil Energy through the Zero Emissions Research and Technology Program (ZERT) - Outstanding co-authors from Lawrence Berkeley National Laboratory - Ljubinko Miljkovic - Liviu Tomutsa - Christine Doughty ## Some Key Issues for CO₂ Storage in Deep Saline Aquifers - What fraction of the pore space can be filled with CO₂? - How big will the CO₂ plume be? - How much CO₂ will be dissolved? - How much will capillary trapping immobilize CO₂? - Can accurate models be developed to predict CO₂ fate and transport? ## Core-flood Set-Up for Relative Permeability Measurements *Brine composition: CO₂ saturated brine with 0.5 molar potassium iodide ### Core-Scale Imaging of CO₂ Distributions ## CT Scans Measure Core Porosity ## Calculation of Permeability ## Core Permeability Distribution ## Laboratory Injections of Various CO₂-Brine Proportions #### Experimental Setup: - > 5%, 10%, 20%, 50%, 80%, 90%, 100% CO₂ injections - 3mL/min constant flow-rate - 6.89MPa constant back-pressure - > 16 ±2°C lab temperature - Brine contains dissolved CO₂ - CO₂ contains dissolved water #### Measure CO₂ Saturation with CT Scanner Digitally reconstruct image ## Relative Permeability Curves ### Small-scale CO₂ Saturation Variations Sub-corescale saturation variations generally overlooked in relative permeability measurements. ## Simulated Injection of Various CO₂-Brine Proportions #### Simulation Cases - > 10%, 90%, 100% CO₂ injections - > 3mL/min constant flow-rate - > 6.89MPa constant back-pressure - > 16°C constant temperature - Brine contains dissolved CO₂ - > CO₂ contains dissolved water #### Core Characterization - Porosity/permeability "map" coarsened - Relative permeability/capillary pressure curves matched to experimental curves - TOUGH2 (Pruess, LBNL) #### Simulated CO₂ Saturations #### Constant Pc Produces Homogeneous CO2 Saturations ## Fitting Capillary Pressure Curve ## Simulated CO₂ Saturations /ariable Pc Produces Small-scale CO2 Saturation Variations ## Capillary Pressure Curve ## Why should we care? ### Why Should We Care? #### Average CO₂ saturation is: - Decreased by sub-corescale heterogeneity - Flow-rate dependent - Affected by simulation grid resolution ## Subcore-scale Heterogeneity Decreases CO₂ Saturation #### Effects of Flow Rate on CO₂ Saturation 90% CO₂ Injection Simulation #### Capillary Pressure Distribution at Different Flow Rates #### 90% CO₂, 10% Brine Injection Variable Simulation Resolutions Grid Size: 0.6×0.6×3mm Grid Count: 67,350 Grid Size: 1x1x3mm Grid Count: 23,400 Grid Size: 2×2×3mm Grid Count: 5,400 ### Finer Simulation Grids Decrease CO₂ Saturation #### Conclusions - Core-scale multi-phase flow experiments reveal strong influence of sub core-scale heterogeneity - Spatial variations in capillary pressure behavior control CO₂ saturations - CO₂ saturation: - Decreases due to bypass of low porosity regions - Decreases at lower flow rates - Predictions depend on grid size - Similar phenomena are expected at all spatial scales - Fundamental research needed to improve model predictions - Fundamental process understanding based on lab and field experiments - Up-scaling strategies that accurately include the effects of sub-grid scale heterogeneity - Calibration and validation of predictive models